		ММЕ		
		Second Year (Third Semester)		
Sl.No	Course Code	Subject (Theory)	Contact Hrs. L-T-P	Credit
1	MA1201	Mathematics-III	3-0-0	3
2	MT1201	Professional Core-1: Metallurgical Thermodynamics & Kinetics	3-0-0	3
3	MT1202	Professional Core-2: Introduction to Physical Metallurgy	3-0-0	3
4		Professional Core-3: Transport Phenomena	3-0-0	3
5	CS1204	Advanced Competency Course-1: Programming in Python (PC-4)	3-0-0	2
6	HS1202	Organizational Behaviour	3-0-0	2
		Subject (Sessional)		
7	MT1281	Metallurgical Thermodynamics & Kinetics Lab	0-0-3	1.5
8	MT1282	Introduction to Physical Metallurgy Lab	0-0-3	1.5
9	MT1283	Transport Phenomena Lab	0-0-3	1.5
10	CS1284	Programming in Python Lab	0-0-3	1.5
		Total	18-0-12	22
		Second Year (Fourth Semester)		
			Contact	
SI.No	Course Code	Subject (Theory)	Hrs.	Credit
			L-T-P	
1	MT1204	Professional Core-5: Phase Transformation	3-0-0	3
2	MT1205	Professional Core-6: Mineral Processing	3-0-0	3
3	MT1206	Professional Core-7: Unit Process of Extraction	3-0-0	3
4	MT1207	Professional Core-8: Deformation Behavior of Materials	3-0-0	3
5	CS1209	Advanced Competency Course- 2: Artificial Intelligence and Machine Learning (I	3-0-0	2
6	HS1201	Engineering Economics	3-0-0	2
		Subject (Sessional)		
	MT1284	Mineral Processing Lab	0-0-3	1.5
7		Process Metallurgy Lab	0-0-3	1.5
7 8	MT1285			
		Phase Transformation Lab	0-0-3	1.5
8	MT1286			1.5 1.5
8	MT1286	Phase Transformation Lab	0-0-3	

Subject Code	MA1201	Total Contact Hour	30
emester	3rd	Total Credit	3
ubject Name	Mathematics–III		3
ubject Name	SYLLABUS		
Module-I	Random variables (Discrete and Continuous. Cumulative Distribution Function (CDF). Variance and standard devia Functions of a random variable. Distributions: Binomial, Poisson, normal, Gaussian, uniform (definitions and exam generating function.		6 Hrs
Module-II	Pairs of random variables. Joint probability density function. Joint probability mass function. Marginal distribution, random variables, PDF and expected values of the sum of two random variables	. Functions of two	6 Hrs
Module-III	Probability Models of n Random Variables. Vector notation. Independence of random variables and random vector vectors. Expected value vector and correlation matrix.	rs. Functions of random	6 Hrs
Module-IV	Stochastic Processes. Definitions and examples. Types of stochastic processes. Random variables from random processes. The Poisson process.		6 Hrs
Module-V	Markov Chains. Discrete-time Markov chain. Discrete-Time Markov chain dynamics. Limiting state probabilities for a finite Markov chain. State classification.		6 Hrs
Essential Reading	 Roy D. Yates, Rutgers and David J. Goodman, Stochastic Processes, 2d Edition, John Wiley and Sons, INC. Gregory F Lawler, Introduction to Stochastic Processe, Chapman & Hall/ CRC Press (Taylor Francis Group). 		
Course Outcomes	The objective of this course is to familiarize the prospective engineers with techniques in Probability and Statistics. advanced level of Statistics that would be essential for Engineering disciplines. CO1. To apply different distributions in real life problems of industries CO2. To deal with problems that contains multivariable probability distribution. knowledge Probability Models of multi-Random Variables CO4. To learn use of stochastic processes in daily life		ts to deal with
		Total Contest II.	20
ubject Code	MT1201	Total Contact Hour	30
emester	3 rd	Total Credit	3
ubject Name	Metallurgical Thermodynamics and Kinetics		
re-requisites	Mathematics-I, Mathematics – II,		
	SYLLABUS		Contact Hou
Module-I	Importance of Thermodynamics, Definition of Thermodynamics; concept of state and path functions, Equation of s processes, Phase diagram of a single component system, Internal energy, heat capacity, enthalpy.		6 Hrs
Module-II	First law of thermodynamics, Second law of thermodynamics, entropy, and entropy changes for various processes, significance, free energy change as a function of temperature, reversible and irreversible process, criteria of equilibr		6 Hrs
Module-III	Fugacity, activity, equilibrium constant, Concept of Third law of thermodynamics, temperature dependence of entre interpretation of entropy, relation between C_p and C_v , consequences of third law, Ellingham – Richardson diagrams.	opy, statistical	6 Hrs
Module-IV	Solutions: partial molal quantities, ideal and non-ideal solutions, Roult's law; Henry's law, Gibbs – Duhem equatio Chemical potential, Free energy – composition diagrams for binary alloy systems, determination of liquidus, solidu		6 Hrs
Module-V	Introduction of metallurgical kinetics: heterogeneous reaction kinetics: gas-solid, solid-liquid, liquid-liquid and solid of Johnson-Mehl equation, thermal analysis, Thermodynamics of electrochemical cells, solid electrolytes.	d-solid systems, Concept	6 Hrs
Essential Reading	 Introduction to the Thermodynamics of Materials by D.R. Gaskell; Taylor and Francis. Textbook of Materials and Metallurgical Thermodynamics by A. Ghosh; Prentice Hall of India Pvt. Ltd. 		
Supplementary Reading	 Problems in Metallurgical Thermodynamics and Kinetics by Upadhyaya, G. S., &Dube, R. K.; International Seri Elsevier. Textbook of Materials and Metallurgical Thermodynamics by A. Ghosh; Prentice Hall of India Pvt. Ltd. 	es on Materials Science an	d Technology
Course Outcomes	CO1. Analyze and incorporate the modern thermodynamic models for description of chemical reaction and phase the CO2. Demonstrate reaction kinetics and stability criteria of different metals based on its energy content and temperate CO3. Define the use thermodynamic laws in day-to-day applications in both domestic and industrial sector. CO4. Analyze and express the kinetics of the mass transport in solids including the process of surface and interface: CO5. Work independently with the literature in search, choice and checking of correctness of the necessary information.	ature. s	
ubject Code	MT1202	Total Contact Hour	30
ubject Coue	3 rd	Total Credit	3
-			-
emester	Introduction to Physical Metallurgy		
emester ubject Name	Introduction to Physical Metallurgy Chemistry, Physics		
emester ubject Name	Chemistry, Physics		
emester ubject Name	Chemistry, Physics Syllabus	ions stomic packing	
emester ubject Name	Chemistry, Physics	tion processes, cooling	6 Hrs
emester ubject Name re-requisites	Chemistry, Physics Syllabus Introduction, Atomic structure of materials, Symmetry aspects in crystals, crystal systems, crystal planes and directi efficiency, voids in common crystal systems, Solidification of pure metal, Homogeneous and heterogeneous nuclea	tion processes, cooling erfections illibrium, Concept of	6 Hrs 6 Hrs
semester Subject Name Pre-requisites Module-I	Chemistry, Physics Syllabus Introduction, Atomic structure of materials, Symmetry aspects in crystals, crystal systems, crystal planes and directi efficiency, voids in common crystal systems, Solidification of pure metal, Homogeneous and heterogeneous nuclea curve, concept of super cooling, microstructures of pure metals, solidification of metal in ingot mould. Crystal impo- Mechanical properties of metals, concept of plastic deformation of metals, CRSS, Slip and twinningConcept of equ	tion processes, cooling erfections illibrium, Concept of binary phase diagrams: oplication, interpretation	
semester subject Name Pre-requisites Module-I Module-II	Chemistry, Physics Syllabus Introduction, Atomic structure of materials, Symmetry aspects in crystals, crystal systems, crystal planes and directi efficiency, voids in common crystal systems, Solidification of pure metal, Homogeneous and heterogeneous nuclea curve, concept of super cooling, microstructures of pure metals, solidification of metal in ingot mould. Crystal important of metals, concept of plastic deformation of metals, CRSS, Slip and twinningConcept of equalloy formation, types of alloys, solid solutions, factors governing solid solubility; Unary phase diagram, phase rule Isomorphous, Eutectic, Peritectic, Eutectoid, Peritectoid, Monotectic and Monotectoid system, Lever rule and its ap of solidification behavior and microstructure of different alloys belonging to those systems, effect of non-equilibriu	tion processes, cooling erfections illibrium, Concept of e, binary phase diagrams: oplication, interpretation im cooling, coring and rought about by these	6 Hrs

Supplementary Reading	 Physical metallurgy principle by Reza, Lara and Robert E Reed hill Foundations of Materials Science and Engineering; 5th Edition William F. Smith and JavadHashemi 1088 pages; McGraw-Hill Education ((April 9, 2009)
Course Outcomes	 CO1. After successful completion of the course, the learners would be able to Familiarize themselves with those terms, concepts, and definition describe the properties and processes of common engineering metals. CO2. Students will be reacquainted with fundamental principles of chemistry and physics which predetermine and control behavior of metals external forces, whether mechanical, physical (electrical, magnetic, optical, thermal) or chemical in nature. CO3. A fundamental understanding can be developed about the relationships between material composition, structure, and properties resulting or service. CO4. Students can understand the testing procedures used to characterize some of the more common physical properties for engineering metal properties should be used when specifying conditions where optimum performance without failure can be expected. CO5. Students can get insight idea about atomistic and defect structures, and how they result in the microstructure and influence the properties 	in response to from processing ls, and how these
Subject Code	MT1203 Total Contact Hour	30
Semester	3 rd Total Credit	3
Subject Name Pre-requisites	Transport Phenomena Calculus	
i i e-i equisites		Contact Hours
Module-I	Fluid Flow: Classification of fluids, Energy balance, Laminar and Turbulent flows. Flow through pipes and ducts. Flow measurement, Application of dimensional analysis of fluid flow.	6 Hrs
Module-II	Steady state and Transient conduction in solids. One-dimensional steady state problems of heat flow through composite walls, Cylinder and Spheres.	
Module-III	Convective heat transfer, equation of energy, free and forced convections Concept of boundary layer. Use of Heisler charts and applications.	6 Hrs
Module-IV	Radiation, Nature of thermal radiation, Black and Grey bodies, Stefan and Boltzmann law, Kirchhoff's laws, Intensity of radiation, lamberts law, View factor.	
Module-V	Heat transfer between two black walls in an enclosure. Combined effect of convection, conduction and radiation. Overall heat transfer coefficient. Mass Transfer and Kinetics: Steady state one-dimensional mass diffusion of component through stationary media. Convective mass transfer in fluids, concept of concentration boundary layer, Mass transfer coefficient.	
Essential Reading	 F.P. Incropera, D. P. Dewitt, T. L. Bergman and A. S. Lavine, Fundamentals of Heat and Mass Transfer, Wiley. H.S. Ray, Kinetics of Metallurgical Reactions 	
Supplementary Reading	 Heat and Mass Transfer: Fundamentals and Applications 5 Edition, Yunus A. Cengel, Afshin J. Ghajar Heat Transfer 10thEdition by JP Holman Mc Graw Hill 	
Course Outcomes	 CO1. Students will be able to express the different mode of heat transfer and develop heat transfer equipment as per need. CO2. Demonstrate basic equations and Laws for heat transfer problems CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state or transfer conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Convection heat transfer by Theore Experimentally. CO5. Apply the concepts of Heat Transfer theory and application in Industrial and day to day life. 	
Subject Code	CS1204 Total Contact Hour	30
Semester	3rd Total Credit	2
Subject Name Course Objective	Programming in Python 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling	
	SYLLABUS	
Module-I		6 Hrs
Module-I Module-II	SYLLABUS Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identifiers, Literals, Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Concept of	6 Hrs 8 Hrs
	SYLLABUS Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identifiers, Literals, Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Concept of Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions.	
Module-II Module-III	SYLLABUS Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identifiers, Literals, Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Concept of Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods.	8 Hrs
	SYLLABUS Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identifiers, Literals, Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Concept of Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destructor and Inheritance.	8 Hrs 6 Hrs
Module-II Module-III Module-IV	SYLLABUS Beginning Python Basics: Introduction to Python Features of Python, Application of Python Data Types, Keywords, Identifiers, Literals, Constants. Python Indentation. Operators and expressions. Naming Conventions with examples, Managing Input and Output, Concept of Indentation. Conditional statement, Looping statements, break and continue, pass & return statements, Nesting of loops. Modules: Built-in Modules, Import statement, Packages, Date and Time Modules. Array and its operations, Handling Strings and Characters, List: slicing, bound, cloning, nested list, list and methods, Adding Element: append, extend, count, index and insert). Mutability: Sort, reverse, remove, clear and pop. Map, Filter. Tuple and methods, Sets and methods, Dictionary: Basic operation, iterator and methods. Function: Introduction to Functions, passing arguments, Anonymous functions (Lambda Function), Recursive Functions. Object Oriented Programming: Classes and Objects, Class methods. Encapsulation, Data Abstraction, Constructor, Destructor and Inheritance. Exception Handling: Handling Exceptions: try-except, try-finally Strings and Regular Expressions : Methods of String Objects, Escape Sequence, Iterating Strings, String Module, String Formatting, Regular Expressions: Re-Module.	8 Hrs 6 Hrs 6 Hrs

	CO1. Understand the Dirthen Language and its features	
	CO1: Understand the Python Language and its features.	
Course Outcomes	CO2: Apply sequence data and control statements to solve problem CO3: Able to create user defined functions to solve problems.	
	CO4: Analyze the concept of OOPs and its implementation.	
	CO5: Create the python program using strings and files.	
Subject Code	HS1202 Total Contact Hour	30
Semester	3rd Total Credit	2
Subject Name	Organizational Behaviour	
Course Objective	 To understand the relevance of organizational behavior concepts and theories in real-life organizational settings & to develop skills in critic decision –making, problem-solving in applying organizational behavior concepts to practical situations. To provide an understanding of individual behavior in the workplace, including personality, motivation, perception, learning, and attitudes 3: To understand the impact of team composition, diversity, and communication on team performance & to understand the role of motivatior managing organizational culture affects behavior, communication and decision making by enhancing creativity and innovation and g how to cope with change and stress. To Develop intercultural competence, including awareness, knowledge, and skills for effective communication, negotiation, and collaborat 	and leadership in ive an episteme
	SYLLABUS	
Module-I	Fundamentals of OB & Understanding the Basic Framework of OB: Evolution of OB through Quality Management movement, Definitions, Scope & Importance of OB, Challenges (Diversity, Globalisation& Ethical Perspective) and opportunities for OB, models of OB, applying OB to solving problems.	6 Hrs
Module-II	OB, applying OB to solving problems. Understanding the Determinants of Individual Behavior: Personality: Determinants of personality, Theories of Personality (Type &Psychoanalytic theory), MBTI, Big five personality traits and other major traits influence workplace behavior. Perception: Meaning, Perceptual Process, Application of Perception at Workplace. Motivation: Motivation Framework, Content theory (Maslow's need hierarchy & Hertzberg's two factors theory), Process theory (Adam's Equity & Vroom's Expectancy theory), Job Design And motivation, Importance of motivation at Workplace. Learning: Theories of learning (Classical Conditioning, Operant Conditioning, & Cognitive Theory), Principles of Learning. Bhavioral	
Module-III	Interning: Theories of learning (Classical Conditioning, Operant Conditioning, & Cognitive Theory), Principles of Learning. Bhavioral modification through learning. Understanding Group and Team Behavior at Workplace: Group & Team: Defining and classifying groups, the five-stage model of group development Group properties: Roles, norms, status, size and cohesiveness, Group decision making. Leadership: Meaning, Definition & types of leadership: Trait theories, Behavioral theories, Contingency theories, Contemporary approaches to leadership, importance of leader in organisations.	
Module-IV	Understanding Group and Team Behavior at Workplace: Organisational Culture: Meaning, Definition, Cultural dimensions, effect of Organisational culture Organisational Change & Development: Nature, Levels & types of Change, Change Agents: Resistance to Change, Force field theory of Change, Managing the Change.	
Module-V	Conflict & International Organisational Behavior: Managing Conflict and Negotiations: Meaning, views, & levels of Conflict, Process of conflict, Conflict resolution techniques. Transactional Analysis: Meaning, Importance of TA, Life position, Ego states And their encounters. IOB: Internationalisation of Business, Cultural differences and similarities, Understanding Interpersonal behavior across culture through Hofstede's Cultural Dimensions	
Essential Reading	 "Organizational Behavior: Text, Cases, & Games" by K. Aswathappa .Publisher: Himalaya Publishing House "Essentials of Organizational Behavior" by Stephen P. Robbins and Timothy A. Judge. Publisher: Pearson Education. 	
	2. Essentials of organizational Denavior by Stephen 1. Robotis and Thilothy A. Judge. Euclidine 1. Carson Education.	
Supplementary Reading	 "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw- 5. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publishe 	Hill Education.
	 "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw- 5. "Organizational Behavior and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. 	Hill Education. r: Wiley
Reading	 "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw- 5. "Organizational Behavior and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3.Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational se CO4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. 	Hill Education. r: Wiley
Reading Course Outcomes	 "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-5. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3. Develop critical thinking. Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational se CO4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. 	Hill Education. r: Wiley ttings.
Reading Course Outcomes Subject Code	1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-Fill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3. Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational seco. CO4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. MT1281 Total Contact Hour	Hill Education. r: Wiley ttings.
Reading Course Outcomes Subject Code Semester	1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: Comparison of the State of	Hill Education. r: Wiley ttings.
Reading Course Outcomes Subject Code	1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-Fill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3. Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational seco. CO4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. MT1281 Total Contact Hour	Hill Education. r: Wiley ttings.
Reading Course Outcomes Subject Code Semester	1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-S. 5. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publishe CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3. Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational secod. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. MT1281 Total Contact Hour 3rd Total Contact Hour 3rd Total Credit	Hill Education. r: Wiley ttings.
Reading Course Outcomes Subject Code Semester Subject Name	1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-S 5. "organizational Behavior: Emerging Knowledge, Global Reality" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-5. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3. Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational se CO4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. MT1281 Total Contact Hour 3rd Metallurgical Thermodynamic & Kinetics Laboratory	Hill Education. r: Wiley ttings.
Reading Course Outcomes Subject Code Semester Subject Name 1	1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 5. "Organizational Behavior: An Evidence-Based Approach" by Steven L. McShane and Mary Ann Von Glinow. Publisher: McGraw-S. "Organizational Behavior: and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: McGraw-Uplisher: McGraw-Hill Education. CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3.Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational set or practical organisational situations. CO4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. MT1281 Total Contact Hour 3 rd Total Credit	Hill Education. r: Wiley ttings.
Reading Course Outcomes Subject Code Semester Subject Name 1 2 3 4	I. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3. Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational se CO4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. Interface SESSIONAL Interface Sector Sec	Hill Education. r: Wiley ttings.
Reading Course Outcomes Subject Code Semester Subject Name 1 2 3 4 5	1. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: McGraw-Hill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher: McGraw-Hill Education. C01. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. C02. Evaluate the effectiveness of different leadership styles and their application in different situations. C03. Develop critical thinking. Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational second. C04. Develop strategies for managing organisational change effectively and maintainingsustainability. C05. Apply organistional behavior concepts and theories to practical organisational situations. MT1281 Total Contact Hour 3 rd Total Credit Metallurgical Thermodynamic & Kinetics Laboratory List of Exp	Hill Education. r: Wiley ttings.
Reading Course Outcomes Subject Code Semester Subject Name 1 2 3 4	I. "Organizational Behavior: Improving Performance and Commitment in the Workplace" by Jason A. Colquitt, Jeffery A. LePine, and Mich Publisher: McGraw-Hill Education. 2. "Organizational Behavior: Human Behavior at Work" by John W. Newstrom and Keith Davis. Publisher: McGraw-Hill Education. 3. "Organizational Behavior: An Evidence-Based Approach" by Fred Luthans. Publisher: McGraw-Hill Education. 4. "Organizational Behavior: and Management" by Ivancevich, Konopaske, and Matteson. Publisher: McGraw-Hill Education. 6. "Organizational Behavior: Theory, Research, and Practice" by John R. Schermerhorn Jr., James G. Hunt, and Richard N. Osborn. Publisher CO1. Explain the importance of organizational behavior in improving individual and organizational effectiveness with Ethical practices. CO2. Evaluate the effectiveness of different leadership styles and their application in different situations. CO3. Develop critical thinking, Creativity& Innovation, problem-solving, and communication skills necessary for success in organisational se CO4. Develop strategies for managing organisational change effectively and maintainingsustainability. CO5. Apply organistional behavior concepts and theories to practical organisational situations. Interface SESSIONAL Interface Sector Sec	Hill Education. r: Wiley ttings.

	CO1 An-law and demonstrate the transmission		
	CO1. Analyze and demonstrate the transport processes. CO2. Ability to analyze the heat, mass and momentum transfer analysis.		
Course Outcourses	CO3. Ability to analyze the industrial problems along with appropriate boundary conditions.		
Course Outcomes	CO4. Ability to develop steady and time dependent solutions along with their limitations.		
	CO5. Analyze and demonstrate the pelletization process.		
	SESSIONAL		
ubject Code	MT1282	Total Contact Hour	16
Semester	3 rd	Total Credit	1.5
Subject Name	Introduction to Physical Metallurgy Laboratory		
	List of Experiments		
1	To make the crystal structures and to study these systems, with the help of ball models.		
2	To study the principles and operation of metallurgical microscope.		
3	To prepare specimen of some metals and alloys for microstructural examination.		
4	To study the microstructure, grain size of the carbon steels.		
5	To study the microstructure, of the given cast iron samples.		
6 7	To study the microstructure, grain size of the selected nonferrous alloys. To find out the grain size number of the given metals and alloys.		
8	Colour metallography of different ferrous metals.		
0	CO1. Demonstrate the different features of optical microscope and their use in metallography.		
	CO2. Develop fundamental skills to prepare best metallographic sample for metallography study.		
Course Outcomes	CO3. Develop skills to analyze the microstructure type and evaluate the corresponding property the sample will sh	now.	
Course Outcomes	CO4. Define different microstructures and defects seen under a microscope.		
	CO5.Characterize different sample both ferrous and non ferrous with the help of color etching techniques.		
	SESSIONAL		
Subject Code	MT1283	Total Contact Hour	20
Semester	3 rd	Total Credit	1.5
Subject Name	Transport Phenomena Laboratory	• •	
	List of Experiments		
1	Study the type of flow by Reynolds experiment		
2	Determination of total thermal resistance and thermal conductivity of a composite wall		
3	Determination of thermal conductivity of Asbestos		
4	Determination of thermal conductivity of a given metal rod		
5 6	Determination of heat transfer coefficient in natural convection Determination of heat transfer coefficient in forced convection		
	I Determination of heat transfer coefficient in forced convection		
7	Determination of emissivity of a given surface		
7 8	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant	of the given heat exchanger	
7	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness	of the given heat exchanger	
7 8 9	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant	of the given heat exchanger	
7 8 9	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water	of the given heat exchanger	
7 8 9	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimension		t state for
7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer.	sional, steady state or transien	
7 8 9	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Convertion CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Convertion	sional, steady state or transien	
7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve	sional, steady state or transien	
7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Convertion CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Convertion	sional, steady state or transien	
7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve	sional, steady state or transien	
7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water C01. Students will be able to classify different types of flow of fluid. C02. Students will be able to classify different types of flow of fluid. C03. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, and convection heat transfer. C04. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. C05. Apply the concepts of Heat Transfer and application in Industrial and day to day life.	sional, steady state or transien	
7 8 9 10 Course Outcomes	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve	sional, steady state or transien	
7 8 9 10 Course Outcomes	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL	sional, steady state or transien	ically and
7 8 9 10 Course Outcomes Subject Code Semester	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes Subject Code Semester	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes Subject Code Semester	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name Course Objectives 1	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. CS1284 Srd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of OOPs and its implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand the concept of Stefan But implementation. 5: To understand	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name Course Objectives 1 2	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of Steffic and its implementation. Story Core Supply Strains Set of Experiments Program on basics of python Programming Language. Program on basic Structures in Python.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name Course Objectives 1 2 3	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basic Soft python Programming Language. Program on Conversion from on data type to another.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 10 Course Outcomes Subject Code Semester Subject Name Course Objectives 1 2 3 4	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of Surings and file handling List of Experiments Program on basics of python. Second Surger Structures in Python . Description Description Descript	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 10 Course Outcomes Ubject Code Genester Ubject Name Course Objectives 1 2 3 4 5	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basics of python Programming Language. Program on Functions in Python. Program on Functions in Python. Program on Functions in Python.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes ubject Code emester ubject Name Course Objectives 1 2 3 4 5 6	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of Stefan Boltzmann constant Cotermination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of Strings and file handling List of Experiments Program on basics of python Programming Language. Program on basics of python Programming Language. Program on Functions in Python. Program using Object Oriented Programming in Python. Program using Object Oriented Programming in Python.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes ubject Code emester ubject Name Course Objectives 1 2 3 4 5 6 7	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory I: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of Strings and file handling List of Experiments Program on basics of python Programming Language. Program on basics of python. Program using Object Oriented Programming in Python. Program using Object Oriented Programming in Python. Program using String in Python.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes ubject Code emester ubject Name Course Objectives 1 2 3 4 5 6 7 8	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of Sverall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of Strings and file handling List of Experiments Program on basics of python. Programming Language. Program on basics of python. Programming in Python. Program on Solic Data Structures in Python. Program on Subject Oriented Programming in Python. Program using Object Oriented Programming in Python. Program using Object Oriented Programming in Python. Program using String in Python.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes ubject Code emester ubject Name Course Objectives 1 2 3 4 5 6 7	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basics of python Programming Language. Program on Suctures in Python. Program using Object Oriented Programming in Python. Program using Object Oriented Programming in Python. Program using String in Python. Program using String in Python. Program using String in Python. Program using Regular expression in Python. Program using String in Python. Program using File Handling in Python.	sional, steady state or transien ection heat transfer by Theored	ically and
7 8 9 10 Course Outcomes iubject Code semester iubject Name Course Objectives 1 2 3 4 5 6 7 8 9	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of Svefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL SESSIONAL SESSIONAL SESSIONAL SESSIONAL Second Structures in Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of Strings and file handling Program on basics of python Programming Language. Program on basic Data Structures in Python. Program using Object Oriented Programming in Python. Program using String in Python	sional, steady state or transien ection heat transfer by Theoret	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name 1 2 3 4 5 6 7 8 9 9	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of strings and file handling List of Experiments Program on basics of python Programming Language. Program on basics of python Programming Language. Program on Suctures in Python. Program using Object Oriented Programming in Python. Program using Object Oriented Programming in Python. Program using String in Python. Program using String in Python. Program using String in Python. Program using Regular expression in Python. Program using String in Python. Program using File Handling in Python.	sional, steady state or transien ection heat transfer by Theoret	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name Course Objectives 1 2 3 4 5 6 7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to classify different types of flow of fluid. CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. CS1284 SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of oOPs and its implementation. 5: To understand the concept of strings and file handling Corgram on basics of python Programming Language. Program on basics of python Programming Language. Program on Sourcesion from on data type to another. Program using String in Python. Program usin	sional, steady state or transien ection heat transfer by Theoret	ically and
7 8 9 10 Course Outcomes iubject Code semester iubject Name Course Objectives 1 2 3 4 5 6 7 8 9	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to descript the design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. CS1284 SECSIONAL CS1284 STed Toduerstand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of Strings and file handling Frogram on basice of python Programming Language. Program on Conversion from on data type to another. Program on Conversion from on data type to another. Program using Object Oriented Programming in Python. Program using String in Python. Program using Regular expression in Python. Program using Regular expression in Python. Program using Regular expression in Python. Program using String in Python	sional, steady state or transien ection heat transfer by Theoret	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name Course Objectives 1 2 3 4 5 6 7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to classify different types of flow of fluid. CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL SESSIONAL S	sional, steady state or transien ection heat transfer by Theoret	ically and
7 8 9 10 Course Outcomes ubject Code emester ubject Name Course Objectives 1 2 3 4 5 6 7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimense conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. CS1284 SESSIONAL CS1284 Second S	sional, steady state or transien ection heat transfer by Theoret	ically and
7 8 9 10 Course Outcomes ubject Code emester ubject Name Course Objectives 1 2 3 4 5 6 7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in parallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to descript the design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. CS1284 SECSIONAL CS1284 STed Toduerstand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of Strings and file handling Frogram on basice of python Programming Language. Program on Conversion from on data type to another. Program on Conversion from on data type to another. Program using Object Oriented Programming in Python. Program using String in Python. Program using Regular expression in Python. Program using Regular expression in Python. Program using Regular expression in Python. Program using String in Python	sional, steady state or transien ection heat transfer by Theoret	ically and
7 8 9 10 Course Outcomes	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in prallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimens conduction and convection heat transfer. CO4. Evaluate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of ot Strings and file handling Desting String in Python Programming Language. Program on basics of python Programming Language. Program on basics of python Programming in Python. Program using Structures in Python. Program using Structures in Python. Program using Structures in Python. Program using Stagi (Python. Progra	sional, steady state or transien ection heat transfer by Theoret	ically and
7 8 9 10 Course Outcomes Subject Code Semester Subject Name Course Objectives 1 2 3 4 5 6 7 8 9 10	Determination of emissivity of a given surface Determination of Stefan Boltzmann constant Determination of overall heat transfer coefficient in praallel and counter flow runs and obtaining the effectiveness Determination of exchange capacity of a cationic resin in the softening of water CO1. Students will be able to classify different types of flow of fluid. CO2. Students will be able to determine thermal conductivity of different materials CO3. Apply heat transfer principles to design and calculate performance of thermal systems related to one dimensional, steady state natural and Forced Conve Experimentally. CO5. Apply the concepts of Heat Transfer and application in Industrial and day to day life. SESSIONAL CS1284 3rd Programming in Python Laboratory 1: Introduction to Python Language and its features. 2: To understand the concept of Python Program using sequence data and Control statements. 3: To be able to understand and create User Defined Function. 4: To understand the concept of OOPs and its implementation. 5: To understand the concept of Strings and file handling Destructures in Python. Program on basics Of python Programming Language. Program on basics Dat Structures in Python. Program on basic Data Structures in Python. Program using Object Oriented Programming in Python. Program using Concernent Python. Program using Structures in Python. 	sional, steady state or transien cetion heat transfer by Theoret Total Contact Hour Total Credit	ically and 20 1.5

Module-IV	Halide Metallurgy and Halogenation., Basic approaches of refining, preparation of pure compounds; Purification of crude metals produced in bulk; Concept of activity, chemical potential, fugacity, real and idle solution, and thee significance in metal extraction, Numerical problems	6 Hrs
Module-III	Gaseous reduction of metals in aqueous solutions; Ion exchange, Solvent Extraction and Electrolysis, Electrometallurgy: laws of electrolysis, electrolyte Structure of solvent media; Electrolysis of aqueous solution; Electrolysis of fused salts; Cell design; Electro refining.	6 Hrs
Module-II	Metallo-thremic and carbothermic reduction of oxides, Smelting Furnaces, Matte Smelting, Pyro metallurgical processes using vacuum Hydrometallurgy: Leaching; Theory of Leaching; Role of oxygen in leaching operation; Bacterial and microbial leaching; Contact reduction of metals in aqueous solutions;	6 Hrs
Module-I	Overview of Extractive Metallurgy processes; Pyro-metallurgy, Hydrometallurgy and Electrometallurgy; Thermodynamic and Kinetic Principles of metal extraction; Ellingham diagrams, Calcinations; Roasting; Predominance Area Diagram, Roasting Practices, Smelting, Formation and function of slag and their calculations,	6 Hrs
Subject Name	Unit Process and Principle of Extraction SYLLABUS	Contact Hours
Semester	4 th Total Credit	3
Subject Code	MT1206 Total Contact Hour	30
Course Outcomes	 CO3. Develop the technology to use the available low-grade ores and minerals. CO4. Use of wastes and recovery of associated minerals and metals, which will satisfy the "go green slogan". CO5. Analyze and demonstrate the in-plant studies in order to improve the productivity of mineral beneficiation plants. 	
Course Outcomes	CO1. Analyze and demonstrate the mineral beneficiation process in an economical way. CO2. Evaluate different mineral beneficiation process according to the nature of the minerals and selectively apply the most suitable process.	of beneficiation.
Supplementary Reading	 I. Rate Processes In Metallurgy by Mohanty, A. K.; PHI Learning. 2. Callister W D 2007 Callister's Materials Science and Engineering: Indian Adaptation adapted by R Balasubramaniam (New Delhi: Wiley). 	
Module-V Essential Reading	agglomerates, important mineral deposits in India. 1. Principle of Mineral Dressing by A. M. Gaudin. 2. Mineral Processing Technology by Berry A. Willis.	
Wiodule-IV	electrostatic separation: Theory and application of magnetic and electrostatic separation techniques in mineral industry. Agglomeration techniques: Sintering, palletizing, briquetting and their applications in ferrous and non-ferrous metal industries, testing of	6 Hrs
Module-IV	sorting classifiers used in mineral industry. Concentration: jigging, tabling, dense media separation. Froth flotation: Construction and operational features of froth floatation cell, reagents used in floatation processes, Magnetic and	6 Hrs
Module-III	Classification: Movement of solids in fluids, free setting and hindered settling of particles, Different types of classifiers, e.g. sizing and	6 Hrs
Module-II	Grinding: Construction and operational features of ball mill, Critical speed of the ball mill, open circuit and closed circuit, Size separation: Sieving and screening, laboratory sizing and its importance, representation and interpretation of size analysis data, industrial screening.	6 Hrs
Module-I	Introduction to mineral beneficiation, sampling, liberation studies and its importance. Comminution: Fundamentals of comminution, crushing: construction and operational features of jaw, gyratory, cone and roll crushers.	6 Hrs
Pre-requisites	Mathematics-I, Mathematics - II SYLLABUS	Contact Hours
Subject Name	Mineral Processing	
Semester	4 th Total Credit	3
Subject Code	MT1205 Total Contact Hour	30
Course Outcomes	 CO1. Develop enhanced critical thinking, analytical and problem-solving skills in materials science and engineering based on concepts of me thermodynamics and kinetics. CO2. Demonstrate the basic principles underlying liquid to solid and solid-state phase transformations in a range of materials. CO3. Implement the importance of phase transformations for controlling microstructure and properties in engineering alloys. CO4. Define the driving forces and kinetic barriers for phase transformations in solid state. CO5.Produce the desired properties of materials which are affected by the atomistic diffusion processes. 	tallurgical
Supplementary Reading	Solid State Phase Transformations by V Raghavan, PHI. Z. Materials Science and Engineering by W D Callister and adapted by R Balasubramaniam (New Delhi: Wiley)	
Essential Reading	 Phase transformations in metals and alloys by D.A. Porter, K.E. Easterling and Sharif, CRC press. Phase transformation in materials by Romesh C Sharma, CBS publishers & Distributors. 	
Module-V	Diffusionless transformations: Martensitic transformations: characteristics, crystallography, theories of Martensitic nucleation, martensite growth. Recovery, Recrystallization and grain growth.	6 Hrs
Module-IV	Ferrite: Nucleation and growth, Pearlitic transformation: mechanism, nucleation and growth, Bainitic transformation: mechanism, nucleation and growth, precipitation in age hardening alloys, spinodal decomposition, massive transformations, order-disorder transformations.	6 Hrs
Module-III	Nucleation and growth: Homogeneous nucleation, homogeneous nucleation rate, Heterogeneous nucleation, Heterogeneous nucleation rate, Growth of a pure solid, Overall transformation kinetics, Diffusional transformations in solids: TTT diagrams, Effect of alloying elements on TTT & CCT diagrams	6 Hrs
Module-II	Diffusion: Driving force for diffusion, atomic mechanisms of diffusion, interstitial diffusion: steady state diffusion, Non-steady state diffusion, Solutions to the diffusion equation substitutional diffusion, High diffusivity paths. Crystal interfaces: Interfacial free energy, Boundaries in Single-phase solids, Interphase interfaces in solids: interface coherency, interfacial energy effects, misfit strain effects.	
	component system, Thermodynamic parameters in binary system, Binary phase diagrams, Free energy Vs Composition phase diagrams.	7 Hrs

Essential Reading	 Principles of Extractive Metallurgy: A. Ghosh & H.S. Ray, IIN Publications, Kolkata 1984 Principles of Extractive Metallurgy: Rosenquist, T., McGrawhill - Kogakusha International – 1983 		
Supplementary Reading	 Mineral Processing and Extractive Metallurgy by Corby G. Anderson (Editor), Robert C. Dunne (Editor), John L. Uhrie (Editor) Metallurgy a Brief Outline of the Modern Processes for Extracting the More Important Metals by W. Borchers. 		
Course Outcomes	 CO1. Illustrate flowsheet of process route for any types of ore. CO2. Student can able to apply thermodynamics principles when dealing with any type of ore. CO3. Students can clearly analyze the proper requirement of different raw materials for metal production. CO4. Student can solve existing issue and new issues which occurs in a plant. CO5. Analyze the best route and techniques for metal extraction and refining economically n profitably. 		
Subject Code	MT1207	Total Contact Hour	30
Subject Code Semester	4th	Total Credit	30
Subject Name	Deformation Behavior of Materials		
Module-I	SYLLABUS Introduction: Scope of the subject, elastic, plastic and visco-elastic deformation. Deformation behavior: Tensile a effect of temperature and strain rate Continuum mechanics: Concepts of stress and strain in 3D stress an		Contact Hours 6 Hrs
Module-II	Principal stresses and strains and principal axes, mean stress, stress deviator, maximum shear, equilibrium of stress compatibility. Elastic behavior of materials: Constitutive equations in elasticity for isotropic and anisotropic materi stiffness and compliance tensor.	· 1	6 Hrs
Module-III	Effect of crystal structure on elastic constants. Plastic response of materials-a continuum approach: classification of stress-strain curves, yield criteria. Microscopic basis of plastic deformation: Elements of dislocation theory, movement of dislocation, elastic properties of dislocation.		6 Hrs
Module-IV	Intersection of dislocation, dislocation reactions in different crystal structures, origin and multiplication of dislocations. Plastic deformation of single crystals: Critical resolved shear stress, deformation by twinning, deformation band and kink band, strain hardening of single crystal; stress-strain curves of fcc, bcc and hcp materials.		6 Hrs
M. 1 I. V.	Plastic deformation of polycrystalline materials: Role of grain boundaries in deformation, strengthening by grain boundaries, yield point phenomenon, strain ageing, strengthening by solutes, precipitates, dispersoids and fibres. Deformation in non-metallic materials: structure and deformation of polymers, concept Super lattice dislocations in inter metallics, and concept of charge associated with dislocations in ceramics.		6 Hrs
Module-V			
Essential Reading Supplementary	 Mechanical Metallurgy, 3rd Ed., McGraw Hill Book Company, New Delhi, 1986 - G.E Dieter. Mechanical Behavior of Materials, McGraw Hill Book Company, New Delhi, 1990 - T.H. Courtney Mechanical Behaviour of Materials by Norman E. Dowling 		
Reading	2. Mechanical Behaviour and Testing of Materials" by a K Bhargava and C P Sharma		
Course Outcomes	 CO1. Calculate and develop the concepts of stress and strain relationships for homogenous, isotropic materials. CO2. Calculate and predict the yielding phenomena occurs in metals and alloys using yield criteria. CO3. Calculate and describe the internal stresses and deformations that result in combined loading conditions CO4. Evaluation of different strengthening mechanism occurs in metals and alloys. CO5. Basic knowledge of deformation mechanism in polymers and intermetallics. 		
Subject Code	C\$1209	Total Contact Hour	3
Semester	4th	Total Credit	30
Subject Name	Artificial Intelligence and Machine Learning		
Pre-requisites Course Objective	 To familiarize students with the fundamental concepts, theories, and applications of Artificial intelligence& Mach the various subfields of AI& ML. Students will have a clear understanding of the fundamental concepts and terminology of Artificial intelligence& and comprehend AI-related topics. Students will have a clear understanding about neural networks, Fuzzy logic. Students will have a clear understanding about Clustering and related techniques. Students will have a clear understanding about Clustering and related techniques. Students will have a clear understanding about Clustering and related techniques. 	5	0 0
Modulo I	Introduction to Artificial Intelligence, Applications of AI, State-space problem, Problem solving by Intelligent search	ch: BFE, DFS, Iterative	
Module-I	Deepening Search, Hill climbing, Heuristic search: A*, AO*, MIN_MAX Algorithm, Alpha-beta cutoff		8 Hrs
Module-II	Knowledge representation and reasoning: Formalized symbolic logic, propositional logic, First-order predicate logi clausal form, inference rules, resolution principle.	-	5 Hrs
Module-III	Unsupervised Learning: K-means, K-Medoids, Hierarchical clustering, Density based clustering, Validation Metho validation.	u. LOO, K-1010 Cross	5 Hrs
Module-IV	Supervised Learning: Decision Tree, Naïve Bayes classifier, K-NN, Introduction to regression. Performance matrix Precision, Recall, Sensitivity, Specificity, MAE, MSE		6 Hrs
Module-V	Neural Network Artificial Neuron and its model, activation functions, Neural network architecture: single layer and networks, recurrent networks, Training of ANN, Back propagation, RBFNN.	multilayer feed forward	6 Hrs
Essential Reading	1.E.Rich and K. Knight, Artificial Intelligence-TMH 2.Neuro Fuzzy and Soft Computing, J. S. R. JANG, C.T. Sun, E. Mitzutani, PHI		
Supplementary Reading	 Artificial Intelligence, Dan W Patterson, Prentice Hall of India Computational Intelligence Principles, Techniques and Applications, Amit Konar, Springer publication. M. Gopal, Applied Machine Learning, McGraw Hill Education, 2018 		

	CO1:Understand the basics of Search techniques, Knowledge representation and reasoning in Artificial Intelligence. CO2:Understand the Supervised machine learning and Unsupervised machine learning.	
Course Outcomes	CO3:Analyzevarious machine learning models. CO4:Implement various Supervised machine learning techniques and analyze them. CO5:Implement various Unsupervised machine learning techniques and analyze them.	
ubject Code	HS1201 Total Contact Hour	30
emester	4th Total Credit	2
ubject Name	Engineering Economics	
	SYLLABUS	
1odule-I	Basic Principles of Economics: Definition, Nature, Scope and significance of economics for Engineers. Demand & Supply and their Determinants, Elasticity-Government policies and application. Basic Macro economics concept: National income accounting (GDP/GNP/NI/Disposable Income etc) and identities for both closed and open economies.	6 Hrs
1odule-11	Utility Analysis: Cardinal and ordinal measurability of utility, Assumptions of cardinal utility analysis, law of diminishing marginal utility, Consumer's equilibrium: Principle of equi-marginal utility; Indifference curve-Concepts, properties, Budget line, Equilibrium of the consumer, Revealed preference hypothesis, Individual choice under Risk and Uncertainty: St. Petersburg paradox and Bernoulli's hypothesis, Neumann-Morgenstern method of constructing utility index, Friedman-Savage hypothesis	
Iodule-III	Production, Cost and Market Structure: Production function: short run production function and law of variable proportion; Long run production function: Isoquants, isocost line, returns to scale, Optimum factor combinations, Cost Analysis: Concepts, Classification- Short run and Long run cost curves, Analytical and accounting cost concepts; Market structure: Market classifications, Perfect competition: Characteristics, price and output determination in Short run and long run, Monopoly market: Price and output determination, price discrimination Modern theories of firms: Baumol's theory of sales revenue maximisation, Bain's limit pricing model.	6 Hrs
Module-IV	Money and Banking: Money-Function of Money, Demand for Money Theory. Quantity theory of money; Banking: Commercial Banks and their Functions, Central bank's Functions. Role of the Banks in Economic Development, Monetary and Fiscal Policy Tools and their impact on the economy.	
Module-V	Capital Budgeting and Investment Analysis: Time value of money: use of cash flow diagram, Annual economic worth, present worth, future worth, Internal Rate of Return (IRR), Net Present Value (NPV), Payback period method, Analysis of public projects: Cost-Benefit analysis, Cost effectiveness 6 '	
	1. Koutsoyiannis, A. (1979). Modern Microeconomics. The Macmillan Press Ltd., London	
Essential Reading	 Pindyck, R. S., D. N. Rubinfeld and P. L. Meheta (2009). Microeconomics, Pearson India, New Delhi Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia 	
Essential Reading	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions	
	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making	
ourse Outcomes	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL	16
ourse Outcomes	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL Total Contact Hour	16
Course Outcomes ubject Code emester	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Total Contact Hour 4 th Total Credit	16 1.5
ourse Outcomes ubject Code emester	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Total Contact Hour 4 th Total Credit Mineral Processing Laboratory	
ourse Outcomes ubject Code emester ubject Name	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Total Contact Hour 4 th Total Credit Mineral Processing Laboratory List of Experiments	
ourse Outcomes ubject Code emester ubject Name	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Total Contact Hour 4 th Total Credit Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker	
ourse Outcomes ibject Code imester ibject Name 1 2	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Total Contact Hour 4 th Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving.	
ourse Outcomes ibject Code mester ibject Name 1	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making ESSIONAL MT1284 Total Contact Hour 4 th Total Cendit Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the jaw crusher and determine the actual capacity and reduction ratio, and verification of Rittinger's law of crushing.	
ourse Outcomes ubject Code emester ubject Name 1 2 3	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Total Contact Hour 4 th Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving.	
ourse Outcomes ubject Code emester ubject Name 1 2 3 4	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 MT1284 Total Contact Hour 4 th Total Credit Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the jaw crusher and determine the actual capacity and reduction ratio, and verification of Rittinger's law of crushing. Crushing of ore/coal in a roll crusher and average size determination by sieving.	1.5
ourse Outcomes ubject Code emester ubject Name 1 2 3 4 5	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the jaw crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density	1.5
course Outcomes ubject Code emester ubject Name 1 2 3 4 5 6	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the jaw crusher and determine the actual capacity and reduction ratio, and verification of Rittinger's law of crushing. To study the effect of grinding with grinding time in ball mill. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process.	1.5
Course Outcomes ubject Code emester ubject Name 1 2 3 4 5 6 7	 3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making MT1284 Total Contact Hour 4 ^a Total Contact Hour Total Credit Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO1. To analyze the role of faveling size and reduction ratio on mineral beneficiation process. CO3. To demonstrate the principles of density separation. CO3. To demonstrate the principles of density separation. CO4. To demonstrate the role of gravity separation using wilfley table.	1.5
Jourse Outcomes	 3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2 - Describe the utility measurement and measure the utility associated with risk CO3 - Efficient use of resources in production and take decision regarding optimum output CO4 - Describe market mechanism and analyse product market to take proper decisions CO5 - Implement economic principles in company related decision making MT1284 Total Contact Hour 4th Mineral Processing Laboratory Exist of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the jaw crusher and everage size determination by sieving. To study the fixed of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of density separation. CO3. To calculate and analyze the role of average size and reduction ratio on mineral beneficiation process. CO4. To demonstrate the role of gravity separation. CO5. Demonstrate the role of gravity separation using wilfley table. SESSIONAL	1.5 of each fracti
ourse Outcomes abject Code emester abject Name	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Markiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2 - Describe the utility measurement and measure the utility associated with risk CO3 - Efficient use of resources in production and take decision regarding optimum output CO4 - Describe market mechanism and analyse product market to take proper decisions CO5 - Implement economic principles in company related decision making Total Contact Hour 4 th MI1284 Total Contact Hour 4 th Total Credit Mineral Processing Laboratory List of Experiments Crushing of ore/coal in the jaw crusher and average size determination by sieving. To at Credit To study the jaw crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of or or pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of density separation. CO3. To calculate and analyze the role of average size and reduction ratio on m	1.5 of each fracti
burse Outcomes biject Code mester biject Name 1 2 3 4 5 6 7 8 burse Outcomes biject Code mester	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making MT1284 Total Contact Hour 4 th Total Contact Hour Cush of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the jaw crusher and average size determination by sieving. Crushing of ore/coal in a roll crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of density separation. CO3. To calculate and analyze different trushing laws to define the relationship between the energy consumption and final product size. CO5. Demonstrate the principles of density separation. CO3. To demonstrate the principles of density separation. CO3. To calculate and analyze different trushing laws to define the relationship between the energy consumption and final product size. CO5. Demonstrate the principles of density separation. CO3. To demonstrate th	1.5 of each fract
burse Outcomes biject Code mester biject Name 1 2 3 4 5 6 7 8 burse Outcomes biject Code mester	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Markiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2 - Describe the utility measurement and measure the utility associated with risk CO3 - Efficient use of resources in production and take decision regarding optimum output CO4 - Describe market mechanism and analyse product market to take proper decisions CO5 - Implement economic principles in company related decision making Total Contact Hour 4 th MI1284 Total Contact Hour 4 th Total Credit Mineral Processing Laboratory List of Experiments Crushing of ore/coal in the jaw crusher and average size determination by sieving. To at Credit To study the jaw crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of or or pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of density separation. CO3. To calculate and analyze the role of average size and reduction ratio on m	1.5 of each fract
ourse Outcomes abject Code mester abject Name 1 2 3 4 5 6 7 8 burse Outcomes abject Code mester	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making M11284 Total Contact Hour 4 th Total Contact Hour Crushing of ore/coal in the jaw crusher and average size determination by sieving. To determine and analyze the size distribution of a fixed granular solid by using a test sive stack and a vibratory shaker Crushing of ore/coal in a roll crusher and average size determination by sieving. To study the fifect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separate and analyze therefur enshing laws to define the relationship between the energy consumption and final product size. CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of density separation. CO3. To calculate and analyze thre level of average size direction ratio on mineral beneficiation process. CO4. To demonstrate the role of average size more direction ratio on mineral beneficiation process. CO5. Demonstrate the role of average size with erdie to relationship between the energy consumption and final product size. CO5. Demonstrate the role of gravity separation. CO5. Demonstrate the role of gravity separation. CO5. Demonstrate the role of gravity separation. CO5. Demonstrate the role of average size more the relationship between the energy consumption and final product size. CO5. Demonstrate the role of gravity separation. CO5. Demonstrat	1.5 of each fract
ourse Outcomes ubject Code emester 1 2 3 4 5 6 7 8 burse Outcomes ubject Code emester ubject Name	3. Pannecrselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Total Contact Hour 4 th Total Contact Hour 4 th Total Credit Mineral Processing Laboratory List of Experiments To study the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the affect of grinding with grinding time in ball mill. To study the offect of grinding with grinding time in ball mill. Study of magnetic separator and defferent then the situal equation by sieving. Crushing of ore/coal in a roll crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. Study of magnetic separator and effect of field on the efficiency of the process. CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of direft process. CO3. To claculate and analyze the role of average size and reduction ratio on mineral beneficiation process. CO4. To demonstrate the principles of direft process. CO5. Demonstrate the role of average size and reduction ratio on mineral beneficiation process. CO4. To demonstrate the role of average size and reduction ratio on mineral beneficiation process. CO5. Demonstrate the role of gravity separation. CO5. Demonstrate the role of gravity separation using wilfley table. MT1285 Total Contact Hour 4th Process Metallurgy Laboratory List of Experiments Total Credit Process Using carbonate ore and roasting proces	1.5 of each fract
ourse Outcomes abject Code emester 1 2 3 4 5 6 7 8 ourse Outcomes abject Code emester abject Code emester abject Name 1 2 2 3 4 5 1 2 2 3 4 5 1 2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making ESSIONAL MT1284 Total Contact Hour 4 th Total Credit Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO3. To alculate and analyze the field or graving laws to define the relationship between the energy consumption and final product size. CO5. Demonstrate the orlic of gravity separation. CO3. To calculate and analyze ther field or graverage size and reduction ratio on mineral beneficiation process. CO4. To demonstrate the role of gravity separation. CO5. Demonstrate the role of gravity separation. CO6. To dealculate and analyze therefore of average size and reduction ratio on mineral beneficiation process. CO	1.5 of each fract
ourse Outcomes ubject Code emester ubject Name 1 2 3 4 5 6 7 8 ourse Outcomes ubject Code emester ubject Name 1	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MT1284 Total Contact Hour 4 th Total Contact Hour Total Credit Mineral Processing Laboratory List of Experiments To determine and analyze the size distribution of a fixed granular solid by using a test sieve stack and a vibratory shaker Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the fixer and determine the actual capacity and reduction ratio, and verification of R ittinger's law of crushing. Crushing of ore/coal in a roll crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separte a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO3. To demonstrate the principles of density separation. CO3. To alconstrate the role of average size and reduction ratio on mineral beneficiation process. CO4. To demonstrate the role of gravity separation. CO3. To alconstrate the role of gravity separation. CO3. To elaculate and analyze the role of average size and reduction ratio on mineral beneficiation process. CO4. To demonstrate the role	1.5 of each fract
ourse Outcomes ubject Code emester 1 2 3 4 5 6 7 8 ourse Outcomes ubject Code emester ubject Code emester 1 2 3 4 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3. Pameerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe the truthy measurement and measure the utility associated with risk CO3- Efficient use of resources in product market to take proper decisions CO5- Implement economic principles in company related decision making Total Contact Hour 4 th Total Contact Hour 4 th Total Credit Mineral Processing Laboratory List of Experiments Coushing of ore/coal in the jaw crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separation and effect of field on the efficiency of the process. CO3. To analyze and identify different minerals. CO3. To calculate and analyze the role of areage size and reduction ratio, and verification process. CO4. To demonstrate the officient unierals. CO5. Demonstrate the role of gravity separation. CO5. Demonstrate the role of gravity separation using wilfley table. SESSIONAL NT1285 N	1.5 of each fract
bourse Outcomes ubject Code emester ubject Name 1 2 3 4 5 6 7 8 ourse Outcomes ubject Code emester ubject Name 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making SESSIONAL MI1284 Total Contact Hour 4th Total Contact Hour 1 1 1 1 1 1 1 1	1.5 of each fract
ourse Outcomes ubject Code emester ubject Name 1 2 3 4 5 6 7 8 ourse Outcomes ubject Code emester ubject Name 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk. CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making MIT1284 MIT1284 Mineral Processing Laboratory List of Experiments Total Contact Hour Total Credit Mineral Processing Laboratory List of Experiments Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the jaw crusher and determine the actual capacity and reduction ratio, and verification of Rittinger's law of crushing. Crushing of ore/coal in coll urusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of density separation. CO3. To calculate and analyze the role of average size and reduction ratio on mineral beneficiation process. CO4. To demonstrate the role of gravity separation using wilfley table. MIT1285 MIT125 MIT1	1.5 of each fract
ourse Outcomes ubject Code emester ubject Name 1 2 3 4 5 6 7 8 ourse Outcomes ubject Code emester ubject Name 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise conomics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making Total Contact Hour A th Total Contact Hour A th MI1284 Total Contact Hour Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the give crusher and average size determination by sieving. To study the give crusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of density separation. CO3. To calculate and analyze the of average size at reduction ratio on mineral of direct separation. CO3. To calculate and analyze the of ed ensity separation. CO3. To canonstrate the principles of density separation. CO3. To canonstrate the principles of density separation. CO3. To canonstrate the principles of density separation. CO3. To calculate analyze the ore of average size and reduction ratio on mineral beneficiation process. CO4. To densortstrate and analyze the role of average size and reduction ratio on mineral beneficiation process. CO5. Demonstrate the role of gravity separation using wilfly table. SESSIONAL Total Contact Hour Tot	1.5 of each fract
course Outcomes ubject Code emester ubject Name 1 2 3 4 5 6 7 8 course Outcomes ubject Code emester ubject Name 1 2 3 4 5 6 7 8	3. Panneerselvam, R. (2007). Engineering Economics, Prentice-Hall of India, New Delhi 4. Mankiw Gregory N. (2002). Principles of Economics, Thomson Asia CO1- Utilise economics principles in consumption process CO2- Describe the utility measurement and measure the utility associated with risk. CO3- Efficient use of resources in production and take decision regarding optimum output CO4- Describe market mechanism and analyse product market to take proper decisions CO5- Implement economic principles in company related decision making MIT1284 MIT1284 Mineral Processing Laboratory List of Experiments Total Contact Hour Total Credit Mineral Processing Laboratory List of Experiments Crushing of ore/coal in the jaw crusher and average size determination by sieving. To study the jaw crusher and determine the actual capacity and reduction ratio, and verification of Rittinger's law of crushing. Crushing of ore/coal in coll urusher and average size determination by sieving. To study the effect of grinding with grinding time in ball mill. To separate a mixture of two minerals of different densities by gravity concentration using Wilfley Table and determine the weight and density Beneficiation of ore pulp mix using floatation cell. Study of magnetic separator and effect of field on the efficiency of the process. CO1. To analyze and identify different minerals. CO2. To demonstrate the principles of density separation. CO3. To calculate and analyze the role of average size and reduction ratio on mineral beneficiation process. CO4. To demonstrate the role of gravity separation using wilfley table. MIT1285 MIT125 MIT1	1.5 of each fract

Course Outcomes	CO1. Produce a suitable product from carbonate and sulphide ore for subsequent metal production CO2. Evaluate the property of iron ore pellet and lump iron ore so as to select the best raw materials from iron CO3. Develop skills to produce metal using hydrometallurgy route. CO4. Develop skills to produce metal by melting and casting route and can evaluate the macor structure of ing CO5. Develop skills to produce pure metals out of a given ore.	-	
		Tradict Constant Harman	1(
Subject Code Semester	MT1286 4th	Total Contact Hour Total Credit	16 1.5
Subject Name	Phase Transformation Laboratory	Total Credit	1.5
Subject Name	List of Experiments		
1	Measurement of volume fraction, surface area in two phase and single-phase materials.		
2	To study the Recovery, Recrystallization and Grain growth behavior of given material.		
3	To study the phase transformation of Pb-Sn eutectic alloy using DSC.		
4	Draw the cooling curves of Pb-Sn alloy with the help of DTA.		
5	To study the precipitation Hardening behavior mechanism in Al-alloys.		
6	Nucleation of Ice from Water: A Modelling Approach.		
7	Study of nucleation and growth in Eutectoid steel.		
8	To study the surface hardening treatments like carburizing/Boronizing on steels.		
Course Outcomes	CO1.Analyze the role of phase transformations on the development of microstructure and properties of metall CO2. Produce the microstructures resulting from near-equilibrium vs. far-from-equilibrium thermal treatments CO3. Apply the fundamental principles that determine the evolution of structures from liquid melt as well as c CO4. Demonstrate the experimental techniques in correlating the structure with the desired properties. CO5. Implement the mechanism of phase transformation in surface hardening treatments.	s	
Subject Code	MT1287	Total Contact Hour	12
Semester	4 th	Total Credit	1.5
Subject Name	Fuel Testing Laboratory		
	List of Experiments		
1	To determine the calorific value of coal and coke using bomb calorimeter.		
2	Proximate analysis of coal and coke.		
3	To determine flash point and fire point of a given sample such as kerosene oil. Diesel and petrol by Pensky- M	Aartins /or other apparatus.	
4	To determine the effect of temperature on kinematic viscosity of glycerin by redwood viscometer.		
5	To determine the bulk and true density of coal sample by using density meter.		
	1		